
ICO Workshop R & RStudio

Part 3

Data manipulation with dplyr

Sven De Maeyer & Tine van Daal

2nd - 4th July, 2024

1 / 28

OverviewOverview

Tidyverse --- (Tidyverse --- (Click hereClick here))
The The dplyrdplyr package --- ( package --- (Cliick hereCliick here))
Implementation --- (Implementation --- (Click hereClick here))

2 / 282 / 28



1. Tidyverse1. Tidyverse

3 / 283 / 28

Welcom in the tidyverse

4 / 28



Why tidyverse?

more accessible for beginners

consistent approach for all potential tasks

powerful potential applications mith minimum 'effort'

can give confidence to explore R

5 / 28

Tibble

Normally we work with a dataframe in R but we can have very complex data-structures as well (e.g., lists,
matrices, ...)

In the tidyverse ecosystem we work with a simple form of data-structure: a tibble

A tibble is a dataframe that fits the tidy data principle

Friends

## # A tibble: 108 × 4
##    student occassion condition fluency
##      <dbl>     <dbl>     <dbl>   <dbl>
##  1       1         1         1   101. 
##  2       1         2         1   104. 
##  3       1         3         1   117. 
##  4       2         1         2    98.8
##  5       2         2         2   107. 
##  6       2         3         2   111. 
##  7       3         1         3   105. 
##  8       3         2         3   102. 
##  9       3         3         3   101. 
## 10       4         1         1   102. 
## # ℹ 98 more rows

6 / 28



What is tidy data?

Artwork by @allison_horst 7 / 28

What is tidy data?

Artwork by @allison_horst 8 / 28



What is tidy data?

Artwork by @allison_horst 9 / 28

2. The 2. The dplyrdplyr package package

10 / 2810 / 28



dplyr ...

is THE package to work with tidy data !

VERBS are at the core:

filter()

mutate()

select()

group_by() + summarise()

arrange()

rename()

relocate()

join()

11 / 28

https://raw.githubusercontent.com/rstudio/cheatsheets/master/data-transformation.pdf

12 / 28



To create
a chain of functions

Instead of

mean(c(1,2,3,4))

or

Numbers <- c(1,2,3,4)
mean(Numbers)

you can do

c(1,2,3,4) %>% 
  mean( )

With the %>% you can write a sentence like:

I %>% woke up %>%, took a shower %>%, got breakfast %>%, took the train
%>% and arrived at the ICO course %>% …

The %>% operator (a 'pipe')

13 / 28

filter()

Artwork by @allison_horst

14 / 28



Let's apply filter()

With the FRIENDS data:

We only select observations from the first measurement occassion in condition 1

Friends_Occ1 <- Friends %>%
  filter(occassion == 1 & condition == 1)

== is equals (notice the 2 = signs!)

Let's clean some data, and remove observations with fluency values above 300 and that do not equal
fluence value 0

Friends_clean <- Friends %>%
  filter(fluency < 300 & fluency != 0)

!= means not equal to

15 / 28

mutate()

Artwork by @allison_horst
16 / 28



Let's apply mutate()

With the Friends data:

We calculate a new variable containing the fluency scores minus the average of fluency

Friends <- Friends %>%
  mutate(
    fluency_centered = fluency - mean(fluency, na.rm = T)
    )

17 / 28

Let's apply mutate()

With the Friends data:

We create a factor for condition

Friends <- Friends %>%
  mutate(
    condition_factor = as.factor(condition)
  )

str(Friends$condition_factor)

##  Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 3 3 3 1 ...

18 / 28



Let's apply select()

To select variables.

Some examples with the Friends data:

We only select condition and occasion and inspect the result with the str()function

Friends %>%
  select(
    condition, occassion
  ) %>%
  str()

## tibble [108 × 2] (S3: tbl_df/tbl/data.frame)
##  $ condition: num [1:108] 1 1 1 2 2 2 3 3 3 1 ...
##   ..- attr(*, "value.labels")= Named chr [1:3] "3" "2" "1"
##   .. ..- attr(*, "names")= chr [1:3] "No subtitles" "Spanish" "English"
##  $ occassion: num [1:108] 1 2 3 1 2 3 1 2 3 1 ...
##  - attr(*, "variable.labels")= Named chr(0) 
##   ..- attr(*, "names")= chr(0) 
##  - attr(*, "codepage")= int 1252

19 / 28

Rename variables with rename()

Notice how the variable occassion is misspelled! Pretty enoying when coding... But we can easily rename
variables.

Function rename(new_name = old_name)

Rename the variable occassion to occasion

Friends <- Friends %>%
  rename(
    occasion = occassion
  )

20 / 28



Super combo 1: group_by() + summarize( )

transform a tibble to a grouped tibble making use of group_by()

calculate summary stats per group making use of summarize()

Calculate the average fluency and standard deviation per condition

Friends %>%
  group_by(
    condition
  ) %>%
  summarize(
    mean_fluency = mean(fluency),
    sd_fluency   = sd(fluency)
  )

## # A tibble: 3 × 3
##   condition mean_fluency sd_fluency
##       <dbl>        <dbl>      <dbl>
## 1         1         109.       9.08
## 2         2         108.       6.02
## 3         3         103.       4.17

21 / 28

Super combo 1: group_by() + summarize( )

Calculate the number of observations for each combination of condition and occasion

Friends %>%
  group_by(
    occasion, condition
  ) %>%
  summarize(
    n_observations  = n()
  )

## # A tibble: 9 × 3
## # Groups:   occasion [3]
##   occasion condition n_observations
##      <dbl>     <dbl>          <int>
## 1        1         1             12
## 2        1         2             12
## 3        1         3             12
## 4        2         1             12
## 5        2         2             12
## 6        2         3             12
## 7        3         1             12
## 8        3         2             12
## 9        3         3             12

22 / 28



Super combo 2: mutate() + case_when( )

Artwork by @allison_horst

23 / 28

We create a new categorical variant of
fluency with 3 groups, then we select this
new variable and have a look to the top 5
observations...

Friends %>%
  mutate(
    fluency_grouped = case_when(
      fluency < 106.625 - 7.1 ~ 'low',
      fluency >= 106.625 - 7.1 & fluency < 106.625 + 7.1 ~ 'aver
      fluency >= 106.625 + 7.1 ~ 'high'
    )
  ) %>% 
  select(
    fluency,
    fluency_grouped
    ) %>%
  head(5)

## # A tibble: 5 × 2
##   fluency fluency_grouped
##     <dbl> <chr>          
## 1   101.  average        
## 2   104.  average        
## 3   117.  high           
## 4    98.8 low            
## 5   107.  average

Super combo 2: mutate() + case_when( )

To recode variables into new variables!

24 / 28



How to define conditions

x == y  'x is equal to y'

x != y  'x is NOT equal to y'

x < y  'x is smaller than y'

x <= y  'x is smaller or equal to y'

x > y  'x is higher than y'

x >= y  'x is higher or equal to y'

→

→

→

→

→

→

25 / 28

Bolean operators

We can combine conditions!

&  'and'  example: gender == 1 & age <=18

|  'or'  example: gender == 1 | gender == 2

!  'not'  example: gender == 1 & !age <=18

→ →

→ →

→ →

26 / 28



Interactive tutorial about dplyr()

If you want some more material and a place to exercise your skills? This online and freetutorial (made with
the package learnr) is strongly advised!

https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome

27 / 28

You can find the qmd-file You can find the qmd-file Exercises_dplyr.qmdExercises_dplyr.qmd in the Exercises folder (you in the Exercises folder (you
created the project yesterday!) (Exercises > Exercise2_dplyr)created the project yesterday!) (Exercises > Exercise2_dplyr)

Open this documentOpen this document

You get a set of tasks with empty code blocks to start codingYou get a set of tasks with empty code blocks to start coding

Write and test the necessary codeWrite and test the necessary code

Stuck? No Worries!Stuck? No Worries!

We are thereWe are there
Help each otherHelp each other
There is a solution key (There is a solution key (Exercises_dplyr_solutions.qmdExercises_dplyr_solutions.qmd))

 Exercise  Exercise dplyrdplyr

28 / 2828 / 28


